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Abstractl

Thk paper presents a new approach to a gesturc+trsxldng system using real-time range on-demand.

The system represents a gesture-controlled interface for interactive visual exploration of large data sets.

The paper describes a method performing rnnge processing ordy when necessmy and where necessary.

Range data is processed only for non-static regions of interest. This is accomplished by a set of filters on

the color, motion, and range data. The speedup ach]eved is between 41% and 54%. The algorithm also

includes a rcjbust skin-color segmentation insensitive to illumination changes. Selective range processing

results in dynamic regional range images (DRR.Is). This development is also placed in a broader context

of a biological visual system emulation, specifically redundancies and attention mechanisms.

1This work was psrformsdunderthe auspicesof the US. Departmentof Ensrgyby Universityof CaliforniaLawrence
LivsrmoreNationalLaboratoryundercontractnumberW-7405-Eng-48.UCRL-.W-137651
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Since the system is being developed as a front end for gesturecontrolled larg~scale visualization aud

virtual rdity manipulation, certain requirements and complications are obvious. First, 3-D information

is required, not necessarily at a vid~frame rate, but at least a few times per second (optimal parameters

should be determined aa a result of testing on a large group of people). Second, not only arms or hands,

but also the entire body of the interacting person is moving. More over, interaction will take place in

front of the large screen where the data being manipulated will be displayed. Most of the time the data

will be updated dynamically as a result of such mrmipulatioq and, therefore, traditional techniques such

as background subtraction cannot easily sepmate a figure from the background. Third, motion of the

interacting person should be natural and should result in intuitive data manipulation, where intuitive

means eaaily learned and fsst to providee immediate results.

Object tracking horn image sequences is a very important research domain. Goals of object tracking in-

clude segmenting each frame into differently moving objects, selecting the object of interest, and analyzing

its motion during the entire sequence or multiple sequences. Object trding, therefore, involves processing

of both spatial and temporal data. A number of applications is dealing with trackng the motion of the

human body. These applications include vide>snrveillance, gesture-btwed interfaces for multimedia appli-

cations and :Iystems, and interfaces for people with disabilities that prevent them from using the standard

input technc,logy, and videoconferencing. The most popular mode of human-computer interaction (HCI)

is based on devices like keyboards and mice, which limit the speed and naturalness of the interaction [1].

Researchers continue to investigate ways to use human communication through movement as a natural

means of interacting with computers. They strive to design and develop computer interfaces that capture

and interpret such human movement. Another application is object manipulation in virtual environments.

Traditional approaches to tracking typically relied on segmentation of the intensity data, using motion

or appearance data. A majority of the methods began by segmenting the human body from the back-

ground. For instauce, in “blob approaches” people were modeled as a number of blobs resulting from pixel

classification based on their color and position in the image. Wren et al. [2] acideved segmentation by

classif@g pixels into one of several models, includkg a static world and a dynamic user represented by

gaussian blobs. Yang and Ahuja [3] used skh color and the geometry of palm and face regions for seg-

mentation w;ages of their system. A Gaussian mixture (with parameters estimated by an EM algorithm)

2



modeled the d~tribution of skin-color pixels. Rehg aud Karmde [4] used a 3-D hand model to track a

baud. They compared line features from the imagea with the projected model, and performed incremental

state correct ions. Similar work wss presented by Kuch aud Huaug [5] in which the synthesis process could

fit the hand model to auy person’s hand. Bobick and Wilson [6] treated gesture as a sequence of states

rmd computed configuration statea along prototype gestures. Yacoob and Black proposed parameterized

representation of humau movement [7]. Cutler and Davis [8] segmented the motion and computed a moving

objects self-similarity (including human motion experiments). A review by Aggarwal and Cai [9] classified

aPPr~es to human motion ~~ysis, the treks involved, and major areas related to human motion inter-

pretation. A review by Pavlovic et al. [1]addressed main components and directions in gesture recognition

research for HCI.

It is known that color-based skin detwtion tectilquea are susceptible to variability in lighting condL

tions [1]. Some common solutions included [1]: specially colored gloves or markers, restrictive backgrounds

or clothing, prior knowledge of initial hand positions, or movement restrictions. A goal of our project

is to exclude such simplificatiorra. Iustead, we uss the SCT/Center algorithm that cau handle changing

illumination, It was originally developed for skin cancer detection using color features [10]. Later the

algorithm wns successfully tested for position estimation of micro-rovers [11].

Usefulness of 3-D data in gesture-analysis applications is not questionable. Since most machine vision

system try to recover useful information about a scene from its projections, having thre+dimensional (3-D)

data eliminates amhiguitiw in solving the inversion of a many-t-one mapping. The projection of humau

movement often cau be aflected by the observation viewpoint and the dktance horn the camera [7]. Most

gesture-tracking and recognition applications could certainly benefit from includlng range data and having

more information recovered from a scene. Uutil recently, however, using range data for tracking was not

feasible because of the speed aud cost considerations. Some authors used multiple carueras and models to

obtain 3-D locations of body parts. Azarbayejani and Pentland [12] triangulated on blobs composing a

model. Gavrila and Davis [13] addressed whcdebody tracldng with four cameras placed in the corners of

the room. Segen and Kumar [14] used depth cues from projections of the hand aud its shadow for 3-D hand

pose estimation. Otherwise, range data was used in motion analysis primarily in an otlhe mode [15, 16].
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Recent availability of less expensive, faster range data makes it a feasible additional source of infor-

mation for tracking. This is the first real-time gesture-tracking system that utilizes on-demand range in

both spatial and temporal representations (some initial results have previously appeared in [17]). It will be

applied to nat ~al navigation and visualization Of large data sets. The method is also applicable to virtual

reality systems. Oda et a{. [18] reported application of a real-time range to virtual reafity which utifized

comparison o:f the depth information in real and synthetic data. In addition to efficient range process-

ing, the proposed method also deals with the major shortcoming of color-based localization methodologies

variabilityy of the skin-coIor classification results under different illumination conditions.

2 Description of the Method

Both color and range image are grabbed synchronously, and color image is extracted and rectified (cor-

rected for lens distortions). However, range is not processed at this point (Figure 2) as one would expect.

Instead, numerous filters are applied to the color data. These filters achieve a goal of localizing regions of

interest (ROL3), specifically hands for our application (since their motion will provide input to visualization

programs),

First, color feature fiIters are applied. The spherical coordinate transform (SCT) separates color and

brightness information. Color normalization provides SCTS insensitivity to variations in illumination (see

Appendix 2). LAB space is computed, and pixels are classified as skin are computed using derived statistical

data. A skin classifier with minimum distance classifier using Mahalanobis distance (see Appendix 2) selects

pixels that can be considered skin pixels.

Noise is removed by a sequence of erosions and dilations. The connected component analysis is per-

formed next by scanning from left to right and from top to bottom, labeling, and evaluating equivalences.

Resulting regions are sorted, and small regions are removed from further consideration. Region area is

evaluated with respect to the image size. Other geometry and shape filters are designed to eliminate regions

with unlikely shapes for human faces or hands, including long regions, regions with very few pixels (less

than 30 Yo) classified as skin.

Human hands and faces are difficult to detect when only color information is used. Experiments

described in the next section use a simulation of a possible virtual scene with objects of various shapes and
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Figure 2: Algorithm of the range on-demand approach.

sizes, and a robotic hand that could be following human gestures in a completed back-end virtual reality

application. To confuse the program, one of the objects, a ball in the center of the scene, is given color

properties very similar to human skin.

That is why additional filters are set to prevent such confusion. A static region detection filter (defined

for frames after the first) determines the absence of cnrrent motion for a given region. The filter evaluates

current motion proportionally to the average noise level and the image size (since motion considered

neglectable for relatively large images can be considered important for smaller ones). The process results

in dynamic regional range images (DRRIs). Static regions are shown on DRRIs as outlines only, since
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range is not c,omputed for them. DRRIs contain ramge information for regions of interest (with pixels still

classified m skin after color- and geometry-based filters) moving in the current frame, outlines for static

regions and recent mot ion information for both.

Only non-static regions are selected for range processing, which takes place at thk point (again let us

note that colcr and range were grabbed syrrchronously, only the range processing was postponed). Stereo

is estimated only for selected ROIS. Thus, the computation bottleneck is greatly reduced (see the next

section for sp~edup percentages vs. region sizes),

Next, the depth anaIysis filter evaluates whether ROIS exhibit face or hands geometry; since the depth

is known at I,his step, absolute sizes are computed. Non-human regions are excluded from the motion

computation, but are currently still tracked on the color images and DRRIs for visual purposes. If skin-

colored moving objects pass previous filters, then they are unveiled at thk point (and not included into

motion computation). The entire algorithm of the range on-demand approach is shown in Figure 2.

3 Experimental Results

The following experiments involve application of the algorithm to color and range image sequences of

gestures. Triclops color stereo vision system (manufactured by Point Grey Research, Vancouver, Canada)

is used to capture these sequences. The module connects to a single-processor Pentium III PC. Range

information is recovered in real time from a correlation-based trinocular stereo algorithm (see Appendix 1

for details about the algorithm).

Typical culor and range images produced by the stereo vision system me shown in Figure 3. Closer

objects appear lighter in the range data, except for the darkest areas (for instance, some hair and far wall

regions), indicating that no correspondence was found during the stereo matthing process. As a result

of applying color information-based filters, skin regions are selected (shown as white areas in the binary

image in Figure 4(a), and as a rectangular enclosing boxes in Figure 4(b)).

Selected frames from sequences of intensity images and DRRfs me shown in Figures 5 and 6. Fkames

are chosen when both color and range information were scheduled to be processed (every n-th frame in the

algorithm, w“heren=5). To tell the preparation stage from the nucleus and retraction stages, interactors

will use a fist as if grabbing the object being manipulated. That is why frames taken during gestures
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Note that the tracking system developed is a front-end for the interactive visualization software, and,

therefore, ba&ground subtraction is not the best option in the general case. No apparently static regions

are processed (the face and the ball). Otherwise, they would have been excluded from motion analysis on

the basis of depth or size or both by the last filters. Hand motion was detected in frames 3, 7 and 10, and

reflected in respective DRRIs.

Similarly, the second sequence tracking a translational gesture (hand motion side-tc-side in Figure 6)

contains hand motion in six frames (not considering the first one) and head motion in two frames (8 and

9). Obviously, keeping one’s head completely motionless is not a practical consideration, and head motion

is present in all frames. In most frames, however, it does not pass the small motion filter (based on the

average noise level and the image size).

DRRIs can be included in motion analysis, trajectory computation, gesture recognition, to determine

what types of gestures are natural and feasible for robust tracking and interpretation for interactive explo-

ration of large data sets and virtual environments. They can be easily plotted in a 3-D space for movement

trajectory parametrization. Also they can produce (also in 3-D) templates for recognition of movements

somewhat similar to the temporal templates [19].

Tables 1 and 2 contain statistics for corresponding motion sequences. Frame numbers correspond to

respective frames in figures. “Number of ROIS” column indicates regions selected for range processing, next

column contains their total area. Percent age of total image size is also included, as well as the total time

for thk frame (for the entire algorithm to process it) and the speedup over an average non-ROI processing

time per frame (488 ins).

Average frame rate for longer sequences is also measured and averaged. Processing 1 range image for

every 4 color images is done at a rate of 10.6 frames per second for a 320x240 image size, and at a rate of

16.5 frames per second for 160x120 images. Therefore, the method is applicable to the real-time processing.

More over, since the W]clops library is currently optimized for thread parallel processing, a much greater

speedup can be tileved on a dual-processor NT machine (we plan to move the system there in the near

future).

The speed.up is significant (between 41% and 54%). However, according to equation 3 (see Appendix

1), the speedup per frame should be proportional to the ratio between ROI and image areas. Experiments
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Table 1: Statistics for the forward hand motion.

Table 2: Statistics for the side-t~side hand motion.

Frame Number Total % of Time for Speedup,
(Fig. 6) of ROIS area of area this frame, %

ROIS size ms
1 3 8690 11.32 287 41.1

2 0 0 0 240 50.8

3 1 690 0.90 267 45.3
4 1 837 1.09 267 45.3

5 1 837 1.09 267 45.3

6 0 0 0 233 52.2

7 1 868 1.13 267 45.3

8 2 6719 8.75 281 42.5

9 2 6425 8.37 280 42.6

10 0 0 0 241 50.7

show that, for example, 6-8’70ratio yields a gain of slightly more than 4070 over non-ROI implemental ion.

One of the reasons is that rectification (distortion removal) is still done on the entire image.

Another reason is that actual region sizes (for the correspondence matching between cameras) also

include the number of disparities d searched: for a K by L region, a left-tc-right PaM is done for a K(L + d)

region, and a top-tmbottom psss is performed for a (K + d)L region. Matching on the entire image does

not encounter this effect since there is obviously no data outside the image boundaries. Yet, these re~ons

do not account for the differences between the theoretical and experimental speedup. An implementation

maximizing potential advantages of using ROIS can bridge thk gap.
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Motion trajectories for both hand movements in a 3-D space are shown in Figure 7. Zoom gestue

trajectory is shown as a solid line, and trrmslation is denoted with a dashed line. It is obvious that zoom

gesture represents a siguificaut chauge in Z coordinate relative to the almost rmustaut depth during the

translation. Data from trajectory computations will be transferee dynamically into an appropriate (for

the task) interactive visualization software.

Figure 7: Motion trajectories for both hand movements in a 3-D spsze: zoom gesture trajectory is shown
as a did line, and translation is denoted with a dashed line.

Table 3 summarizes application of the method to a total of 400 images taken in different settiugs

with one or two pmple performing various gestures. Qurmtitative analysis is performed for major groups

of filters in the method. The only exception is a combhation of color feature filters and noise removal

filters, because, depending on the scene complexity, totrd number of regions identified by color could reach

hundreds. All harrds used for mauipulatiorr (where manipulation is identified by ‘grabbing” ) were detected

(a total of 552 since some manipulations require two hauds). At the end, false positives (FPs) represent

only 3.5Y0, false negatives are always less than 5%. The table alm shOws that static regiOn detection yields

not only a si.gnificarrtspeedup, but also an improved loc.sEzation of hauds during mauipulat ions.
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Table 3: Results of hand(s) tracking in 400 images,

~

1 Detected I FPs I FPs, %
Color feature and noise removal I 3576 I 3024 [ 84.56
Region geometry 1524 972 63.78
Static region detection 716 164 22.91
Depth and absolute size 572 20 3.5

4 Additional Aspects of Real-Time Range

Increased processing speed can also facilitate a combination of intensity- and rangebased input features.

Range data enables localized search for specific features, which improves tracking reliability and speed.

Registered range data provides an additional information valuable for segmentation and tracking. Of-

ten, an object of interest can be separated from other objects or background by depth alone. In other cases,

having fewer artifacts (that could complicate segmentation) in range information compared to intensity

data is an important consideration for model matching [15].

Fkal-time constraints such as temporal correlation produce a possibility of searching withh a smaller

region, based on the match in the previous frame. For the range image, this involves depth planes immedi-

ately surrounding the plane where a hand (or face) was found in the previous frame. Subsequent search in

the subset of the intensity data corresponding to these planes produces the position of the body part in the

current frame. Therefore, intensity data is thresholded for the certain range and depth. Such combined

use of input features produces not only a speedup due to a significant reduction in a search space, but also

increased reliability due to a decreased number of false positives that could fall in such space. Rather than

processing all pixels, thk allows us to select ouly those pixels with the certain depth, based on the depth

of the previously detected region of interest.

Two intensity images from a sequence of the speaking person are shown in Figures 8(a-b). More images

are not displayed due to space restrictions. A skin detection algorithm is applied to the intensity data from

Figure 8(a). Results of skin thresholding following color segmentation are shown in Figure 8(c). Pixels

classified as skin are white. Note that, along with the face and hand information, it picks up up parts of

other objects – a curtain on the right and a belt.
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processing can be considered one of such tasks, Accuracy demands for many tasks rise faster than hard-

ware improvements. That is why recent precision scanners spend more time on range acquisition and

computation than older, less accurate models. For instante, it takes on average more then 30 seconds to

acquire and compute range data using a K2T scanner on a SUN SPARC 20, and more than 2 minutes

using a Cyherware scanner on Silicon Graphics 02 (considering Klgher precision achieved with the latter),

This makes an interesting case for applying other human perception phenomenons to this problem.

The phermmenon of attention in human vision [20] is a biological solution to the problems of complexity

and overabundance of data. It is a means to put the limited resources of the visual system into the right

place (and the right orientation) at the right time, and to set the mind in the right context. An important

point is the limited amount of available computational power, both in our brain and in the computer

(for range processing) that we actually have. On the biological side, this might be the reason for the

usefulness of attentiorwd mechanisms. The attentioncd mechanism carr then be seen as the tool for granting

“computational resources” to the tasks, according to their dynamic priorities. Another view of attention

is as a mechanism for determining regions of iuterest in an image (DRRIs in the proposed approach).

Attention includes certain aspects [20] similar to the properties of the described system such as filtering

unnecessary data and attending to selected sources only (such as had motion in the described system),

searching for a particular feature (skin color), and expecting somet hlng to happen meanwhile attending to

empty space (static region outlines in DRRIs).

Another way to schedule the range-processing computations is to describe a system of states and

operators in mrch a way that a heuristic evaluation function can guide their application. A sketch of thk

part of such a system is given in the following

1) the space of states S includes states that correspond to sets of ROIS,

2) the set of operators includes transformations T between the states in the temporal and spatial senses,

3) there are means of computing the cost of an arc (s1, s2),

4) a current state at any time is represented by a DRRI, and

5) a goal-state predicate is defined, which returns true when a state represents a completely tracked

(and recognized) gesture.
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Thus, the process of gesture-tracking with real-time range on-demand may be thought of as finding a

path through a “regional attention” kind of graph. The path nodes corresponding to states of ROIS. A

minimum-cost path from the start state to a goal state is therefore analogous to a maximum likelihood

classification of the gesture sequence.

6 Conclusions and Future Work

This paper presented a new approach to a gesture-tracking system using real-time range on-demand. The

system represents a gesture-controlled interface for interactive visual explorat ion of large data sets. The

paper described a method performing range processing only when necessary and where necessary. This is

achieved by a set of filters on the color, motion, and range data. The speedup achieved is between 41%

and 54%. The algorithm also includes a robust skin-color segmentation insensitive to illumination changes.

Selective range processing results in dynamic regional range images (DRRIs). This development is also

placed in a broader context of a biological visual system emulation, specifically redundancies and attention

mechanisms.

The gesture-tracking system described in thk paper will be responsible for supplying data manipulation

parameters to interactive data exploration and collaborative visualization software. Processing one range

image for every fonr color images is done at a rate of 10.6 framea per second for a 320x240 image size, and

at a rate of 16.5 frames per second for 160x120 images. Therefore, the method is applicable to real-time

processing. More over, as the Triclops library is currently optimized for thread parallel processing, a much

greater speedup can be achieved on a dual-processor NT machine (we plan to move the system there in

the near future).

Robustnew of the approach is achieved with multiple input feature sets. Depth filters are necessary in

addition to color, motion and shape filters. Increased speed of processing can also facilitate a combination

of intensity- and range- baxed input features. Range data enables localized search for specific features,

whkh improves tracking reliability and speed.

DRFUS can be included in motion analysis, trajectory computation, and gesture recognition, to deter-

mine what types of gestnres are natural and feasible for robust tracking and interpretation for interactive
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exploration of large data sets and virtual environments. They can be easily plotted in a 3-D space for

movement trajectory parametrization.
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Appendix

A.1 Range Computation

The ‘lMclops stereo vision system [21] computes range based on triangulation between cameras. It consists

of a thre~camera module. Offset in positions of the cameras produces differences in resulting images.

These images are compared using square masks to establish correspondences [21]:

(1)

Where dnlanand alma. are the minimum and maximum disparities, ~ is the mask size, Iright and ~left

are the right and left images, respectively [21:1.Since the camera parameters (their relative positions, the
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focal length amdresolution) are fixed, re-calibration is not usually required. According to the multi-baseline

stereo theory [22, 18] used in the stereo computation by the system, dktance z to the scene point is related

to the disparity d, baseline length B and focal length F’:

(2)

The total amount of computation for stereo processing per frame (required for the Sum of Absolute

Differences algorithm) is estimated as [lg]:

iV2M2d(C – l)P (3)

where N2 is the image size, C is the number of cameras (three for the system used), and P is the

number of op erations per one square difference calculation.

A.2 SCT Color Space

The main reason SCT became an integral part in numerous applications in the medical imaging [10] and

robotics [11] is because it separates the color and brightness information. This allows for a much more

reliable segmentation based on the color data whkh is normally greatly affected by the lighting conditions.

The spherical coordinate transform from the RGB space into a LAB space is defined as [11]:

L=4R2+G2+B2

[11A= COS-l ; (4)

‘B=cos-’[ii$d
where L i}>the one-dimensional brightness space, and angles A and B determine a two-dimensional color

space. Color normalization provides SCTS insensitivity to variations in illumination. L cam be viewed ss

a norm of the vector from the origin to the point in RGB space, A is the angle between the vector and

the blue axis, and B is the angle between the red axis and the projection of the vector onto the RG plane

(Figure 9(a)). As a result of the transform, a new color spsce is represented by a color triangle which

can be partitioned into the specified number of classes (Figure 9(b)). Greater number of clsases improves

19



,

discrimination. The minimum and maximum A and B values are calculated, defining such m-em withh

the triangle in equal angular increments. The RGB means are defined for each class.

Pixels with certain color properties are found in the image using the minimum distance classifier with

Mahalanobis {distance. It can be defined as a distance from the feature vector X to the mean vector M=

,= J& - M=)c;’(x-M.)

where Cx is the covariance matrix for X.
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Figure 9: RGB and LAB color spaces: (a) LAB values for a point in RGB space, (b) partitioning of the
color triangle into ckmses.
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